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Abstract
The energetics of transition and noble metal (Rh, Pd, Cu) vicinal surfaces, i.e.,
the surface energy, step energy, kink energy and electronic interactions between
steps, is studied at 0 K from electronic structure calculations in the tight binding
approximation using an s, p and d valence orbital basis set. Then, the surface
phonon spectra of copper are investigated in the harmonic approximation with
the help of a semi-empirical inter-atomic potential. This allows one to derive
the contribution of phonons at finite temperatures to the step free energy and
to the interactions between steps. The last part is devoted to the stability of
vicinal surfaces relative to faceting with special attention paid to the domain
of orientations (100)–(111). Semi-empirical potentials are shown to be not
realistic enough to give a reliable answer for this problem. The results derived
from electronic structure calculations predict a variety of behaviours and, in
particular, a possible faceting into two other vicinal orientations. Finally,
temperature effects are discussed. Comparisons are made with other theoretical
works and available experiments.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Studies of vicinal surfaces of metals have given rise to numerous experimental and theoretical
works. Indeed the role of steps and kinks is fundamental for understanding the morphology
of crystal surfaces and, in particular, its evolution with time and temperature as well as the
equilibrium surface structure. In addition, vicinal surfaces may provide appropriate substrates
for growing nanostructures, for instance nanowires, with magnetic and transport properties of
high technological interest.

In the last 20 years the direct investigation of the local surface structure has become
possible by the use of scanning probe microscopies such as scanning tunnelling microscopy
(STM). Information on the energetics of surface defects can hence be derived from a statistical
study of STM images and their evolution with temperature. For instance, the study of the
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equilibrium shape of large adislands grown in homoepitaxy on monocrystalline surfaces has
been used to determine the anisotropy of step energies and, more recently, the absolute values
of step and kink energies [1]. Furthermore, the interaction between steps can be deduced
from the study of terrace width distributions [2]. Kink energies can also be obtained from the
observation of the spatial equilibrium fluctuations of step edges [3, 4]. In addition, experimental
investigations of localized vibrational modes at vicinal surfaces have been carried out in the
last decade by means of inelastic helium atom scattering (IHAS) [5] and electron energy loss
spectroscopy (EELS) [6].

All these experimental results have motivated a lot of theoretical work. The study of the
energetics of vicinal surfaces at 0 K starts from the determination of the surface energies as
a function of the surface orientation. It has been investigated either by using semi-empirical
potentials including an N body contribution such as in effective medium theory (EMT) [7, 8],
the embedded atom method (EAM) [9], the second moment potential (SMA) [10–12] or
starting from the determination of the electronic structure using the density functional theory
(DFT) or the tight binding approximation (TB). However due to the very low symmetry of
these systems, first principles calculations are scarce and limited to a very small number of
geometries and metals: Al [13, 14], Cu [15, 16], Pt [17]. In contrast, in the case of transition
metals, TB methods are able to describe correctly the quantum mechanical effects without a
lot of computational effort. Using this method we have been able [18] to perform a systematic
study of various vicinal surfaces of Rh, Pd and Cu as a function of the misorientation angle
from which we have deduced step and kink energies as well as step–step interactions. The
results of this work are reviewed in section 3, after a brief presentation of the geometry of
vicinal surfaces (section 2).

Similarly ab initio methods have also been used to obtain localized vibration modes at
vicinal surfaces but only the modes at high symmetry points of the Brillouin zone have been
investigated [19, 20]. Central pair potentials in the harmonic approximation yield a reasonable
description of vibration modes but not at a quantitative level. A good accuracy can be achieved
with N body semi-empirical potentials such as that of the EAM [21, 22]. More recently we
have set up a new potential for Cu [23] with which we have been able to reproduce accurately
the phonon dispersion curves measured by means of IHAS [5] and EELS [6] on flat as well as
on vicinal surfaces. In section 4 this potential is presented and the results concerning phonon
dispersion curves and the vibrational contribution to the step free energy are summarized.

Finally, it is not obvious that all vicinal surfaces should be in thermodynamic equilibrium.
Actually vicinal surfaces may decrease their surface free energy by rearranging the atoms in
order to exhibit a hill and valley (or a factory roof) structure. This phenomenon, called faceting,
is indeed observed in experiments and its occurrence can be predicted from the knowledge of
the spatial anisotropy of the surface energy [24]. Using the results of sections 3 and 4. we have
been able to re-examine [25, 26] this old problem in a realistic way. In section 5 we report our
main results and discuss the implications of doing electronic structure calculations rather than
using empirical potentials.

2. The geometry of vicinal surfaces

A vicinal surface is obtained by cutting a crystal along a plane making an angle θ with respect to
a low index plane normal to the direction n0 (figure 1). For selected values of θ , such a surface
can be viewed as a periodic succession of terraces normal to n0, with equal widths, separated
by steps of monatomic height. The width of the terraces is determined by the number p of
atomic rows (including the inner edge) parallel to the step edges. A vicinal surface corresponds
to an atomic plane with high Miller indices. It can also be denoted using the Lang et al [27]
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Figure 1. Step geometry of a p(hkl) × (h′k ′l′) vicinal surface.

Table 1. Geometrical features of the four types of vicinal surface. The geometry of the step edges
is indicated by the distance between two consecutive atoms: nearest neighbours (nn), next nearest
neighbours (nnn). The nature of the 2D unit cell is rectangular, either primitive (PR) or centred
(CR). Finally the usual notation, step A and step B, for the vicinal surfaces of (111) is indicated.

Lang et al notation Miller indices f Edge geometry 2D unit cell

p(111) × (100) step A (p + 1, p − 1, p − 1) 2/3 nn p odd: PR
p even: CR

p(111) × (1̄11) step B (p − 2, p, p) 1/3 nn p odd: CR
p even: PR

p(100) × (111) (1, 1, 2p − 1) 1/2 nn CR
p(100) × (010) (0, 1, p − 1) 0 nnn p odd: CR

p even: PR

notation p(hkl) × (h′k ′l ′), (hkl) and (h′k ′l ′) being respectively the Miller indices of planes
parallel to the terraces and to the ledges. Note also that when projecting the unit cell of the
vicinal surface onto the terrace plane, a geometrical factor f occurs when the ledges and the
terraces are not orthogonal.

In the following we consider FCC crystals and four step geometries with (111) and (100)
terraces. The geometrical features of the four types of vicinal surface, denoted using Lang et al
notation and Miller indices, are given in table 1. One can note that for a given step geometry
there often exist two types of unit cell (primitive rectangular and centred rectangular) depending
on the width of the terrace ( p even or odd). In the first three geometries considered, the atoms
along the step edges are first nearest neighbours while for the p(100)×(010) surface the atoms
are second nearest neighbours and, consequently, the corresponding step edge has a zigzag
shape that can be seen as a succession of kinks.

3. Electronic structure and energetics of vicinal surfaces in a tight binding model

3.1. The spd tight binding model

The study of the electronic structure of vicinal surfaces has been carried out using a slab
model. The orientation of the normal to the vicinal surface is chosen first. A succession of
Nslab atomic layers are built, Nslab being large enough that the interaction between the two free
surfaces of the slab is negligible. The wider the terraces (i.e., the areas of the vicinal surface
unit cell), the smaller the inter-layer spacing and the larger the number of layers Nslab. The
system has thus a two dimensional (2D) periodicity with Nslab atoms per unit cell. Ab initio
calculations are in principle feasible. However they are, at least up to now, limited to small
terrace widths since they need a large amount of computer time. In contrast, the TB scheme is
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very attractive since it is much less costly in computer time and still describes systems within
the framework of quantum mechanics. Up to the last decade, the TB basis set was limited to
the valence d (xy, yz, zx, x2 − y2, 3z2 − r2) orbitals and this scheme was quite successful in
explaining the general trends in the variation of a large number of physical properties along
the transition series. However for FCC elements at the end of these series, the values of
energetic quantities are then underestimated and even cancel for a full d band, due to the
neglect of the contribution of the outer s and p (x, y, z) orbitals. Recently, it was found that it
is possible to determine a transferable parametrized TB Hamiltonian in an spd basis set giving
not only a quite good description of the band structure up to a few electronvolts above the d
band, but also total energies with a good accuracy. This was initially proposed by Mehl and
Papaconstantopoulos [28] who assumed a non-orthogonal basis set. Then it was shown [29]
that for elements with a not completely filled d band, it was possible to reduce the number of
parameters considerably by assuming an orthogonal basis set.

These models have been described in detail in [28, 29]; thus their main features are only
briefly recalled in the following. The inter-atomic matrix elements of the Hamiltonian H λµ

i j
(i, j : atomic sites; λ,µ: atomic orbitals) in the two centre approximation are determined
from the ten Slater–Koster (SK) [30] hopping integrals ssσ , spσ , sdσ , ppσ , ppπ , pdσ , pdπ ,
ddσ , ddπ , ddδ. The laws of variation with distance of the SK hopping integrals are a simple
exponential decay in [29] and are slightly more involved with a larger number of parameters
in [28]. In the non-orthogonal scheme the overlap integrals Sλµ

i j introduce also ten SK-like
overlap parameters and their variations with distance follow the same kinds of law as the
inter-atomic matrix elements of H . Following [28], in both schemes the intra-atomic matrix
elements H λλ

ii , i.e., the atomic levels εs, εp, εd, are defined in such a way that the total energy
is obtained by summing up the occupied energy levels. This means that all the other terms
contained in the energy functional of the DFT have been taken into account by a rigid shift
of the bulk band structure. As a consequence the atomic levels should depend on the atomic
environment and are written in the form

ε0
iλ = aλ + bλρ

2/3
i + cλρ

4/3
i + dλρ

2
i (1)

with

ρi =
∑
j �=i

exp(−pρ(Ri j/R0 − 1)) (2)

where Ri j is the distance between atoms i and j and R0 is a reference distance, usually the
bulk equilibrium inter-atomic spacing.

The parameters of the model are determined by a non-linear least mean squares fit on the
ab initio band structure and total energy for a few crystallographic bulk structures (usually
FCC and BCC) at several inter-atomic distances. Their values for palladium and rhodium have
been given in [29, 31] and for copper in [28, 32].

It should be noted that these parameters are obtained from systems in which all atoms are
neutral since they are geometrically equivalent. When this is not the case we have added a
shift δVi to the on-site terms in order to ensure local charge neutrality which should be almost
strictly obeyed in metals. Note that in the non-orthogonal case this induces also a modification
δV λµ

i j of the inter-atomic elements of H [18]. These potentials arise from electron–electron
interactions; thus one should subtract the corresponding double counting terms from the sum
of occupied levels in the expression of the total energy which is then written in both schemes
as

Etot =
∑
n occ

εn − Nval

∑
i

δVi (3)

where Nval is the total number of valence spd electrons per atom of the metal.
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3.2. The electronic structure

In order to apply the 2D Bloch theorem, a basis set of 2D Bloch waves localized in each layer
l is defined as follows:

Blλ(r, k‖) = N−1/2
S

∑
i∈l

exp(ik‖ · Ri‖)|iλ〉 (4)

where NS is the number of atoms in each layer and Ri‖ are the translation vectors of the 2D
lattice. Using this basis set the solution of the Schrödinger equation can be written as

	k‖,n(r) =
∑

lλ

cn
lλ(k‖)Blλ(r, k‖) (5)

and the Hamiltonian and overlap matrices are reduced to (9Nslab × 9Nslab) matrices H λµ

ll′ (k‖)
and Sλµ

ll′ (k‖). Then the equation∑
l′µ

[H λµ

ll′ (k‖) − εn(k‖)Sλµ

ll′ (k‖)]cn
l′µ(k‖) = 0 (6)

is solved. Note that when the basis is orthonormal this equation reduces to a classical
eigenvalue(vector) problem. In order to determine the projected band structure εn(k‖), k‖ is
varied along symmetry lines of the surface Brillouin zone (SBZ). Other interesting quantities
can be calculated such as the local density of states (LDOS) at layer l (per surface atom):

nl(E) =
∑
λ,n
l′,µ

A

(2π)2

∫
SBZ

cn∗
lλ (k‖)Sλµ

ll′ (k‖)cn
l′µ(k‖)δ(E − εn) d2k‖ (7)

where A is the area of the surface unit cell, or the spectral local DOS (per surface atom),

nl(E, k‖) =
∑
λ,n
l′ ,µ

cn∗
lλ (k‖)Sλµ

ll′ (k‖)cn
l′µ(k‖)δ(E − εn) (8)

corresponding to a given value of k‖.
Some typical examples of surface projected densities of states, nl(E) and nl(E, k‖), have

been given in [18] for several vicinal surfaces of rhodium. The most striking feature is the
disappearance of almost all gaps. Indeed, as the width of the terraces increases, the area
of the SBZ decreases and the height of the surface adapted bulk Brillouin zone (BBZ), i.e.,
the sampled domain of bulk states (corresponding to all possible values of kz), increases
accordingly and corresponds to lines with no symmetry in the BBZ. This explains the absence
of gaps and of true surface states. However a number of resonances can be identified. When
the terrace width tends to infinity the spectral DOS becomes vanishingly small in the energy
domain corresponding to gaps in the projected band structure of the flat surface with the same
orientation as the terraces.

3.3. Surface and step energies

The calculation of the total energy of the slab, from which surface and step energies are
deduced, involves a summation over the SBZ which is carried out by using special k‖ points
belonging to the irreducible part of the SBZ [33], each energy level being broadened by the
derivative of a Fermi function of width wF. The surface energy per surface atom of the vicinal
surface is obtained from the following equation:

ES(n) = Eslab(n) − Nslab Ebulk

2
(9)
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where Eslab is the total energy of the slab (with Nslab layers) per surface unit cell and
Ebulk is the energy of a bulk atom. The corresponding surface energy per unit area is thus
γ (n) = ES(n)/A(n) where A(n) is the area of the surface unit cell.

The step energy per unit step length β(θ) of a vicinal surface is usually defined by the
formula

γ (n) = γ (n0) cos(θ) + β(θ) sin(θ)/h (10)

where h is the inter-planar distance along the direction n0 normal to the terraces. Note that
due to the presence of the array of steps with a period depending on θ , β(θ) is expected to vary
with θ as a result of step–step interactions. The value of the step energy for an isolated step is
then obtained in the limit θ → 0. It is easy to show [34] that equation (10) can be transformed
into a more convenient form:

Estep(n0, p) = ES(n0, p) − (p − 1 + f )ES(n0,∞) (11)

where Estep(n0, p) is now the step energy per step atom of the vicinal surface in which the
terraces of orientation n0 have p atomic rows parallel to the step edge (including the inner
edge) and ES(n0, p) (ES(n0,∞)) is the surface energy per surface atom of the vicinal (flat)
surface. Finally, f is a geometrical factor depending on the vicinal surface which has been
defined in section 2 (figure 1).

The calculation of step energies and especially of their variation with p is rather tricky
since the step energies are of the order of a few 10−1 eV and the magnitude of their variation
with p is, at most, 	2×10−2 eV. Thus the surface energies involved in (11) must be calculated
with an accuracy of 10−3 eV. The parametrized TB Hamiltonian being given, the accuracy of
the calculation is mainly governed by the thickness of the slab, the number of k‖ points in the
irreducible part of the SBZ and the Fermi level broadening wF. Note that we have extrapolated
the total energy at zero broadening using the usual approximation of [35]:

Etot(T = 0) ≈ Etot(T ) − 1
2 T Se + O(T 2) (12)

where Se is the electronic entropy and T is the electronic temperature corresponding to the
Fermi broadening wF. We have found that the required accuracy is achieved when using a
number of vicinal planes in the slab Nslab = pnslab with nslab 	 10, 64 special k‖ points
and a Fermi level broadening of 0.2 eV. Furthermore the iteration process ensuring the self-
consistent charge neutrality condition was stopped when the difference in charge between two
consecutive iterations was <0.01e− per atom and the difference in total energy was smaller
than 10−4 eV.

In table 2 the surface energies γ (n) per unit surface area and ES(n0, p) per surface atom
are given as a function of p for the p(100) × (111) and p(111) × (100) surfaces. The step
energies per step atom are deduced from (11) and are shown in figure 2 as a function of p.
Typically terraces with p � 6 are wide enough for obtaining the asymptotic value, i.e., the
isolated step energy with a numerical accuracy of 	10−3 eV. The values of the isolated step
energies for Rh, Pd and Cu are given in table 3 for the four families of vicinal surfaces listed
in table 1.

Let us compare our results with those deduced from the effective pair potential model
proposed by Vitos et al [34]. In this model the energy of a bulk atom is written as

Ebulk = −
∑

RJ <Rc

Z J
b VJ (13)

where Z J
b is the number of J th neighbours at the distance RJ for a bulk atom and Rc the cut-off

radius of interactions; the surface energy (per surface atom) is

E(n0, p) =
∑

RJ <Rc

nJ
S VJ , (14)
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Figure 2. The variation of the step energy (per step atom) as a function of the terrace width for the
p(100)× (111) (for which the energy scale has been enlarged in the insets to show clearly the sign
of the interactions) and p(111) × (100) vicinal surfaces of Rh, Pd and Cu.

where nJ
S is the total number of J th neighbours (per surface atom) suppressed by the surface.

The step energies are then given by

Estep(n0, p) =
∑

RJ <Rc

nJ
step(n0, p)VJ (15)

with

nJ
step(n0, p) = nJ

S (n0, p) − (p − 1 + f )nJ
S (n0,∞) (16)

where nJ
S (n0, p) and nJ

S (n0,∞) are, respectively, the total number of neighbours (per surface
atom) in the J th coordination shell suppressed by the vicinal and flat surfaces. In the
work [34] of Vitos et al the effective pair potentials are limited to first, second and third
neighbours (V1, V2, V3) and their numerical values are derived from the (111), (100) and (110)
surface energies. These surface energies are calculated using ab initio codes, the surface
relaxation being neglected. Note that, due to the short range of the pair potentials, the numbers
nJ

step(n0, p) (J � 3) are constant as soon as p exceeds a given value p∞ which is actually very
small, i.e., most often p∞ = 2. As a consequence this model ignores step–step interactions.
Our calculations allow us to check the validity of this approach by using the pair potentials
drawn from the surface energies obtained with the same parametrized TB Hamiltonian. The
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Table 2. The surface energies γ (J m−2) and ES (eV/atom) of two families of vicinal surfaces.
The surface area of the unit cell of a p(100)× (111) surface is S = √

(2p − 1)2 + 2a2/4 (a: lattice
parameter) and the angle θ is given by tan θ = √

2/(2p − 1). The corresponding quantities for the
p(111) × (100) surface are S = √

(p + 1)2 + 2(p − 1)2a2/4 and tan θ = 2
√

2/(3p − 1).

Rh (a = 3.81 Å)

p(100) × (111) p(111) × (100)

p γ ES γ ES

2 3.281 2.465 3.281 2.465
3 3.259 3.836 3.200 3.551
4 3.225 5.217 3.120 4.634
5 3.197 6.597 3.066 5.726
6 3.175 7.976 3.026 6.819
7 3.158 9.355 2.995 7.911
∞ 3.044 1.379 2.781 1.091

Pd (a = 3.89 Å)

p(100) × (111) p(111) × (100)

p γ ES γ ES

2 1.957 1.533 1.957 1.533
3 1.922 2.358 1.897 2.194
4 1.890 3.188 1.847 2.860
5 1.867 4.016 1.811 3.526
6 1.850 4.845 1.784 4.191
7 1.837 5.673 1.764 4.857
∞ 1.754 0.828 1.625 0.665

Cu (a = 3.52 Å)

p(100) × (111) p(111) × (100)

p γ ES γ ES

2 2.049 1.314 2.049 1.314
3 2.051 2.060 2.000 1.895
4 2.034 2.809 1.953 2.476
5 2.019 3.557 1.917 3.057
6 2.008 4.306 1.892 3.639
7 1.999 5.054 1.872 4.220
∞ 1.935 0.748 1.734 0.581

expressions for the step energies are given in table 3 and their numerical values are very close
to the values obtained from the previous method. Thus the method proposed by Vitos et al is
quite valid for deriving a good estimate of the step energies when the low index surface energies
and the step energy calculated from (11) are computed in the same manner. Indeed, we have
compared our results with those obtained with the approach of Vitos et al [34, 36–38] by using
other data sets for the surface energies. It is seen in table 3 that the agreement is reasonable
save for Pd p(100) × (111) using the surface energy data set of Vitos et al. Actually, with the
latter data V2 is negative, while it is positive in the other calculations.

Finally note that in the effective pair potential model the step energy of vicinal surfaces
with (111) terraces is the same for both ledge orientations (100), i.e., type A steps, and (1̄11),
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Table 3. Step energies for various vicinal geometries. Several types of result are presented:
the full TB calculations and calculations based on effective pair potentials V1, V2, V3 (EPP) fitted
on the (111), (100) and (110) surface energies obtained from various methods: TB and ab initio
methods [34, 36–38].

Step energy Estep (eV/atom)

EPP
Vicinal surface
p → ∞ TB TB Vitos Methfessel Eichler Galanakis

Rh p(111) × (100) 0.638 2V1 + 4V3 0.657 0.583 0.520 0.650 0.670
p(111) × (1̄11) 0.645 2V1 + 4V3 0.657 0.583 0.520 0.650 0.670
p(100) × (111) 0.393 V1 + 2V2 0.407 0.288 0.265 0.295 0.285
p(100) × (010) 0.747 2V1 + 2V2 0.738 0.550 0.480 0.580 0.596

Pd p(111) × (100) 0.425 2V1 + 4V3 0.429 0.460 0.423 0.500
p(111) × (1̄11) 0.432 2V1 + 4V3 0.429 0.460 0.423 0.500
p(100) × (111) 0.289 V1 + 2V2 0.295 0.106 0.222 0.298
p(100) × (010) 0.536 2V1 + 2V2 0.533 0.265 0.427 0.548

Cu p(111) × (100) 0.348 2V1 + 4V3 0.347 0.380 0.426
p(111) × (1̄11) 0.345 2V1 + 4V3 0.347 0.380 0.426
p(100) × (111) 0.191 V1 + 2V2 0.192 0.200 0.241
p(100) × (010) 0.352 2V1 + 2V2 0.359 0.363 0.456

i.e., type B steps (see table 3), while in the full TB calculation step A is slightly energetically
favoured for Rh and Pd, the reverse being found for Cu. This has some consequences for the
equilibrium shape of large adislands in homoepitaxy as will be shown below.

Let us now compare our results with experimental data. The ratio of step energies and
their absolute values can be directly determined, by means of STM, from the observation, as
a function of temperature, of the equilibrium shape of the 2D adislands in homoepitaxy on a
surface. On the (111) surface the adislands should show threefold symmetry. Consequently
their shape is hexagon-like with alternating A- and B-type edge segments (see figure 3). When
the two step energies are equal, the A and B segments have equal lengths and the hexagon is
regular. Otherwise the ratio LA/LB of the lengths of A and B segments can be derived from
βA/βB by applying the Wulff theorem. Experimental results are only available for Cu. The
most recent experiments of Giesen [1] give an average step energy for the two kinds of step
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on Cu(111) equal to 0.27 ± 0.03 eV per step atom, the energy of step A being measurably
(1.1 ± 0.7%) larger than that of a B step. Other published results [39, 40] on the average step
energy lie between 0.22 and 0.31 eV. Our full TB calculations (see table 3) are in very good
agreement with experiments for the ratio βA/βB. However they seem to slightly overestimate
the average step energy. On the (100) surface the adislands should show a fourfold symmetry.
Accordingly, the simplest polygonal shapes are a perfect square with (111)-type ledges and
a square with broken corners with both (111)- and (010)-type ledges (respectively A and B;
see figure 3). It can be easily shown [18] that when EA

step/EB
step � 1/2 the equilibrium shape

is a perfect square and it is a square with broken corners otherwise. The experimental results
of Giesen [1] show unambiguously square adislands with broken corners from which Giesen
deduce the ratio EA

step/EB
step 	 0.57 to be compared to our full TB calculations that give 0.54.

The calculated energy of the step (100) × (111) is 0.191 eV, also in good agreement with the
experimental results (0.22 ± 0.02 eV).

3.4. Step–step electronic interactions

Let us now discuss step–step interactions. There exist several types of interaction between
steps. The most studied is the so-called elastic interaction due to the deformation fields around
each step which interact repulsively. This elastic interaction gives rise in the continuum
elasticity limit to an energy term varying at large inter-step distance as 1/d2 where d is the
distance between two consecutive steps [41]. However as we will see below (section 4.2),
when trying to fit results derived from empirical potentials on relaxed surfaces, it appears that
for smaller d (d � 6 inter-row spacings) the behaviour of Estep(d) deviates significantly from
this law [42–45]. Furthermore meandering steps cannot cross each other. This gives rise to an
entropic repulsive interaction varying as 1/d2 at large d [46]. Charge transfers in the vicinity
of the steps produce a dipole–dipole interaction (repulsive or attractive) varying also as 1/d2.

Finally oscillatory electronic interactions of the Friedel type (i.e., arising from the
interference between electron density oscillations around steps which have been visualized
by STM [47]) should also be present similarly to those existing between chemisorbed atoms or
defects [48, 49] but they have attracted little attention, at least up to now. Such interactions have
been invoked by Frohn et al [50] to explain their STM observations on Cu(11 n). They have
been introduced theoretically for cubium with a TB s band by Redfield and Zangwill [51] and
discussed in a phenomenological manner by Pai et al [2]. A calculation of these interactions
for vicinal surfaces of W(110) has also been carried out using a modified fourth moment
approximation to TB theory for a pure d band [52]. However until recently there were no
detailed electronic structure calculations on this subject, except one preliminary attempt with
a TB scheme for FCC transition metals with a pure d band showing that these oscillatory
interactions do exist [53]. General trends were put forward but the results were not quantitative
due to the role played by sp electrons in the total energy, which is significant in FCC transition
metals. The spd TB model described above avoids this approximation. Three main features
can be extracted from figure 2:

(i) the step–step electronic interaction has a damped behaviour which is most often oscillatory,
(ii) the amplitude of the oscillations can be as large as some 10−2 eV for small values of p

and remains of the order of some 10−3 eV when p � 5 in the domain of p studied,
(iii) the shape of the oscillations is quite stable for two neighbouring elements in the periodic

table (rhodium and palladium) but it is dependent on the orientation of the steps.

Let us now compare our results with related works. The electronic step–step interaction
energies are of the same order of magnitude as the full step–step interactions derived from
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Table 4. Kink energies for various steps with close-packed edges in Rh, Pd and Cu (in eV).

(Terrace) × (ledge) Rh Pd Cu

This work Other calculations Experiments

(111) × (100) 0.339 0.249 0.143 0.092 [15] 0.113 ± 0.007 [1]
(111) × (1̄11) 0.329 0.242 0.148 0.117 [15] 0.121 ± 0.007 [1]
(100) × (111) 0.349 0.247 0.146 0.139 [54] 0.123 [4], 0.129 ± 0.009 [1]
V1 0.332 0.238 0.166

experiments by using an analysis of terrace width distributions which most often assumes
purely repulsive interactions varying as 1/d2. This suggests that, as already mentioned [2],
such interactions should be included in the treatment of experimental data. Nevertheless, it
remains difficult to fit our results by an analytical expression and extrapolate an asymptotic
behaviour to compare with elastic interactions.

Unfortunately they are only a few experimental data in the domain of small terrace widths.
However an anomalous behaviour of the terrace width distribution at low temperatures for Cu
p(100) × (111) has been observed by Frohn et al [50] which could be interpreted as due to a
repulsive interaction when d 	 1–2 (in units of the nearest neighbour distance) but attractive
(or oscillatory) when d 	 3–5. This is quite consistent with our results (figure 2).

Finally kink formation energies have been calculated within the same TB method [18]
and the geometry suggested by Feibelman [15]. The results are given in table 4 and compare
favourably with existing experiments and other calculations [15, 54].

4. Vibrational properties of Cu vicinal surfaces

The presence of steps on a surface modifies the electronic structure (see section 3) as well as
the vibrational states, compared to the flat surface with the same orientation as the terraces. In
the following we will use an empirical potential to investigate the vibrational states of vicinal
surfaces of copper and deduce the contribution of phonons to the free energy of steps.

4.1. The empirical potential

The empirical potential used to describe the inter-atomic interactions of a set of atoms located
at Ri is of the form

V (R1, . . . , Ri , . . .) = A
∑

i, j, j �=i

(R0/Ri j)
pr fc(Ri j)

− ξ
∑

i

[∑
j �=i

exp[−2q(Ri j/R0 − 1)] fc(Ri j)

]α

(17)

where Ri j is the distance between atoms i and j , R0 is a reference distance that we take equal
to the bulk nearest neighbour spacing, fc(R) = 1/(1 + exp[(R − Rc)/�]) is a smooth cut-off
function with a cut-off radius Rc, α is an exponent set equal to 2/3, and � = 0.05 Å.

The parameters A, ξ , pr and q are fitted to the experimental values of the cohesive
energy Ec (Ec = −3.5 eV/atom) and of the three elastic constants, i.e., the bulk modulus
(B = 10.470 eV/atom) and the two shear moduli C and C ′ (C = 6.046 eV/atom,

C ′ = 1.917 eV/atom). The equilibrium equation at R0 = 2.5526 Å gives a relation between
the four parameters.
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Figure 4. Phonon dispersion curves of bulk copper. The full lines correspond to the calculated
dispersion curves and the triangles to the phonon frequencies measured from neutron inelastic
scattering experiments [55]. Each segment along the path �(�)X (Z)W (Z)X (�)�(�)L is
proportional to its length in reciprocal space.

We have determined by a least mean squares fit the sets of parameters obtained with
different radii Rc for which interactions are cut off beyond first, second, third and fourth
neighbours. For each set of parameters we have compared the fitted values of Ec, B, C, C ′,
the surface relaxation of low index surfaces and the bulk phonon spectra to experiments. Let
us note that we have also tried other sets of exponents for α but the choice of α = 2/3 greatly
improved the surface energies compared to ab initio data [23].

The best set of parameters is obtained for a cut-off radius Rc = 4.02 Å between second
and third neighbours and the corresponding parameters are A = 0.206 eV, ξ = 1.102 eV,
pr = 7.206, q = 2.220. Indeed with this potential (hereafter referred to as P2) the fit of Ec,
B , C and C ′ is excellent (better than 1 meV per atom). When the potential includes only first
nearest neighbours the shear moduli are not well reproduced and, in particular, C is about
25% smaller than the experimental value. The inclusion of third and fourth neighbours has a
smaller influence on the elastic constants but the general tendency is an underestimation of the
inward surface relaxation as one increases the cut-off radius beyond the second neighbours.
We must emphasize that surface relaxation is important to get the local modifications of force
constants correctly.

To obtain the phonon dispersion curves in the harmonic approximation the dynamical
matrix is calculated from the analytical expression for the potential (17) and diagonalized for
wavevectors k following symmetry lines in the BBZ. The calculated bulk dispersion curves are
presented in figure 4. The agreement with experiment [55] is excellent. Apart from at the top
of the spectrum at points X and L where the deviation between calculated and experimental
frequencies is around 0.2 THz, the deviation is less than 0.1 THz. Note also that the shallow
minimum at W in the lowest frequency band along XWX is reproduced only when Rc is chosen
between second and third nearest neighbours.
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Figure 5. The variation of the step energy per step atom, for the p(100)×(111) and p(111)×(100)

vicinal surfaces, as a function of the terrace width p. The geometry has been fully relaxed.

We have also calculated the surface projected band structure of the phonons for the three
low index surfaces (111), (100) and (110) using the usual slab geometry. Our results were
compared with available experimental EELS and IHAS data. The agreement is excellent for
the three surfaces [23]. Low frequency as well as high frequency surface localized modes
are reproduced with a surprising accuracy which is a good check of the transferability of
the potential since surface modes are extremely sensitive to local modifications of the force
constants due to the surface relaxation.

4.2. Atomic relaxation and elastic step–step interactions

The first task is the determination of the equilibrium atomic structure which is obtained by
a standard conjugate gradient method. A common feature for most metallic vicinal surfaces
is that all atoms, save at the inner edge, relax inwards, i.e., towards the bulk similarly to low
index surfaces. However the direction of relaxation changes with the position of the atomic
row on the terrace and one can identify a vortex-like structure described in a recent paper by
Prévot et al [56]. The outer edge step atom (SC: step chain) always shows the largest inward
relaxation; therefore the distance between the outer edge atom and its first nearest neighbour
having the bulk coordination (BNN) exhibits the largest contraction compared to the bulk
equilibrium nearest neighbour distance. As will be seen later the shortening of SC–BNN
bonds produces a stiffening of the associated force constant. The inner edge atoms, unlike the
other terrace atoms, relax outwards. Another feature common to all metallic vicinal surfaces
is the profile of the multilayer relaxation, defined as the ratio of the distance between two
adjacent atomic planes parallel to the vicinal surface with respect to the corresponding bulk
inter-layer spacing. The multilayer relaxation always shows a damped oscillatory behaviour
with a period of oscillation equal to the vicinality p of the surface [23, 42].

The equilibrium structure of a vicinal surface with a given terrace width p being known,
it is straightforward to calculate the corresponding step energy per atom Estep(n0, p) using
equation (11). Estep(n0, p) varies with the terrace width p as a result of step–step interactions.
The step energy is obtained in the limit p → ∞. In figure 5 we have presented the step energy
per step atom for the vicinal p(100)× (111) and p(111)× (100) surfaces for p ranging from 2
to 9. Estep(n0, p) strictly decreases when p increases as expected from a calculation based on
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a semi-empirical potential, since no oscillatory electronic effects are taken into account [18].
This variation is the result of purely elastic step–step interactions which are known to be
repulsive from elasticity theory and, as mentioned previously, this term should vary at large
inter-step distances as 1/d2 where d is the distance between two adjacent steps [41]. In order
to compare the present results with the prediction of the elasticity theory we have fitted the step
energy per step atom Estep as a function of d = (p −1 + f )a0 where a0 is the distance between
two adjacent atomic rows on the terrace plane (6 � p � 100), with an expression of the form
A0 + A2/d2 + A3/d3. In the case of Cu p(100) × (111) surfaces, f = 0.5 and a0 = R0. The
results are A0 = 0.198 eV, A2 = 0.322 eV Å2 and A3 = −0.955 eV Å3. A0 is the asymptotic
value giving the step energy of an isolated step and is in very good agreement with the value
given by TB calculations (see table 3). It is interesting to note that the coefficients A2 and A3

have opposite signs similarly to what was found on p(100) × (010) surfaces of Ni and Au in
a previous atomistic study [57]. Although A3 is non-zero, its contribution becomes negligible
for p larger than 10.

4.3. Projected phonon band structure of vicinal surfaces

The vibrational spectra of various vicinal surfaces have been presented in a recent paper [23].
Thus, the most important features will be illustrated here for two specific cases for which
detailed experimental IHAS [5] and EELS [6] data are available for phonons propagating
parallel and perpendicular to the step edge on the (211) and (511) surfaces.

There are several common features of the surface projected band structure of vicinal
surfaces. First the most striking feature is the disappearance of almost all gaps in any direction
of k‖ space, for the same reason as already explained in the electronic structure section.
Second, the localized modes propagating perpendicular to the terraces have a clear back-
folded structure. This back-folding leads to optical modes, their number increasing with
the terrace width. Third, the localized modes propagating parallel to the step edge show a
strong similarity with the corresponding modes of the low index surface with the same terrace
orientation. Finally some resonant or localized modes in the vicinity of the steps also appear.
In particular, a very specific mode is present in almost all dispersion curves at the very top of
the band edge. This state is purely localized on the BNN atoms and is closely related to the
stiffening of the force constant mentioned above.

These general features are seen in the surface projected phonon band structure of the
(211) and (511) surfaces, i.e., with the Lang et al notation 3(111)× (100) and 3(100)× (111).
Indeed, in figure 6, the only noticeable small gap is around the X̄ point for the (211) surface,
whereas all gaps have disappeared for the (511) surface. Let us consider the �̄X̄ and �̄Ȳ
directions corresponding to directions of propagation parallel and perpendicular to the step
edges, respectively. Along the �̄X̄ direction of the (211) surface, the most prominent surface
features are a transverse mode (T), horizontally polarized, the sagittal Rayleigh mode (R) and
a step localized mode (E). In addition another localized mode is found around the middle
of the gap at X̄. The same types of mode are also found on the (511) surface. Moreover
there is a weakly localized longitudinal mode (L) which, actually, is also present on the (211)
surface but is even less localized. All these results are in very good agreement with IHAS and
EELS data. Modes propagating perpendicularly to the step (along �̄Ȳ) can be qualitatively
described as resulting from ‘back-folding’ [58] of the Rayleigh and transverse modes. Note
that the mode localized on the BNN atom is particularly visible on the (511) surface for which
the z component of the force constant between the BNN and step edge atom is 44% larger than
the bulk one [23].
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(a)

(b)

Figure 6. Frequency spectra of phonons for the (211) (a) and (511) (b) surfaces of Cu as a function
of k‖ along a given path in the SBZ. Each segment is proportional to its length in the reciprocal
space. Bulk states are represented by small dots. Localized and resonant states are denoted by
heavy dots. The prominent surface features are denoted with the same notation as in [5] and the
localization criterion is 6% on the first four layers. Experimental points are taken from [5] except
for the highest frequency at X̄ which corresponds to the EELS data of [6].
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Figure 7. The contribution of vibrations to the step free energy for p(100) × (111) and
p(111) × (100) vicinal surfaces as a function of p for the given temperatures.

4.4. Vibrational free energy of steps

The contribution of vibrations to the free energy of a system which has a total density of
frequencies n(ν) is given by

Fvib(T ) = kBT
∫ ∞

0
ln

(
2 sinh

hν

2kBT

)
n(ν) dν (18)

where kB is the Boltzmann constant. In the case of 2D periodicity, the integral over the
frequency is carried out by summing over special k‖ points belonging to the irreducible SBZ.
From the vibrational free energy of the vicinal surfaces, low index surfaces and bulk, the
vibrational free energy of steps (per step atom) Fvib

step(T ) can be derived at any temperature using
an equation similar to (11). We have calculated Fvib

step(T ) for p(100)×(111) and p(111)×(100)

vicinal surfaces of increasing terrace widths, for temperatures ranging from 0 to 500 K. The
step vibrational free energy of a given vicinal surface is of the order of a few millielectronvolts
and decreases with temperature, reaching a linear regime for T larger than 100 K when the
entropy contribution becomes the leading term (see [59]). More interestingly Fvib

step(T ) can
be plotted for a given temperature as a function of the terrace width as shown in figure 7.
It appears that Fvib

step(T ) decreases in absolute value when the terrace width increases, i.e.,
phonons produce attractive step–step interactions. Furthermore the absolute value of these
attractive step–step interactions increases with temperature. The possibility of interactions
between surface defects mediated by phonons has already been investigated by Cunningham
et al [60] who have derived the phonon contribution to the free energy of interaction for an
adatom pair on the (100) face of cubium using the Montroll–Potts model and also found an
attractive interaction. Finally note that, even though the vibrational contribution to the step
energy is of the order of a few millielectronvolts, and therefore quite negligible compared to
the absolute value of the step energy, its variation with the vicinality can be of the same order
of magnitude as the repulsive elastic one at least in the range of small terrace widths ( p < 10).
Figure 8 shows the variation of the step energy as a function of p including both the elastic
and vibrational contributions at 300 K. The correction to the isolated step energy is small but
phonons change the curvature of the step energy and, surprisingly, may even modify its sign.
In particular for the p(111) × (100) surfaces the step energy exhibits a minimum at p = 3,
i.e., the resulting step–step interactions are attractive.
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Figure 8. Variation of the step free energy at 300 K as a function of p without (dashed line) and
with (full line) the vibrational contribution.

In addition, it must be kept in mind that electronic effects are far from being negligible,
at least for small terrace widths (typically less than ten atomic rows) and usually give rise to
oscillatory interactions as shown in the previous sections.

5. Stability of vicinal surfaces with respect to faceting

Vicinal surfaces are not always stable. Indeed, as seen in section 3, their surface energies γ are
large and it might be energetically favourable for the solid to expose to vacuum low index facets
with smaller surface energies per unit area, even if the total surface area is increased by the
transformation. This phenomenon, called faceting, has been known for a long time [61]. The
faceting condition implies calculation of the surface energy for any surface orientation, i.e.,
the knowledge of the γ -plot. Herring [24] was the first to propose a geometrical construction
starting from the γ -plot and predicting the occurrence of faceting. Then this condition was
recast in a much simpler way (see section 5.1). The simplest methods for calculating the surface
energies as a function of the orientation range from the crudest empirical pair potentials to
various semi-empirical ones (EAM, EMT, SMA, . . .), including an N body contribution, which
have been set up in the last two decades. Recently, the stability of vicinal surfaces with respect
to faceting was re-examined using the EMT potential [62]. It was shown that the total energy
difference between the vicinal and faceted surface is very small and, surprisingly, it was found
that all vicinal surfaces between the (100) and (111) planes were unstable, at least at 0 K, and that
the observed stability at room temperature arises from the entropy contribution due to thermal
vibrations. However semi-empirical potentials have a common drawback: they only depend
on the inter-atomic distances and not on the angular arrangement of atoms. Although this latter
effect is small in metals, it is not obvious that it can be neglected in view of the tiny energy
difference involved in faceting. In [25, 26], we revisited this problem at 0 K and analysed the
answers given by pair potentials, semi-empirical potentials and the TB calculations presented
above (section 3). Finally our study of vibrational properties of vicinal surfaces (section 4)
has enabled us to investigate the effect of finite temperatures.

In the following we first recall the faceting condition. Then we summarize our results
concerning the possible faceting of the vicinal surfaces that are spanned when going from the
(100) to the (111) plane. Other domains of orientations have been studied in [26].
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Figure 9. Faceting.

5.1. Faceting condition of an infinite surface

Let us consider two low index surfaces �1 and �2 with normals n1 and n2, respectively, which
intersect along a given row of atoms and the set of vicinal surfaces with equidistant step edges
which is spanned when �1 is rotated around the common atomic row towards �2. Let us take
�1 as the origin of angles and denote by θ2 the angle (n1, n2). During this rotation the surfaces
vicinal to �1 are first found and the number of atomic rows p1 (including the inner edge) on
one terrace decreases from ∞ to 2 (angle θc). The surface corresponding to θc can also be
regarded as a vicinal of �2 with p2 = 2. Then for θc � θ < θ2 the surfaces vicinal to �2 are
scanned with increasing terrace widths (p2 � 2). An area S of any of these high index surfaces
will transform into facets of normal n1 (area S1) and normal n2 (area S2) while keeping its
average orientation when (figure 9)

γ S > γ1S1 + γ2S2 (19)

(γ , γ1 and γ2 being the surface energies per unit area of the high index, �1 and �2 surfaces,
respectively) with the constraints

S = S1 cos θ + S2 cos(θ2 − θ), (20)

S1 sin θ = S2 sin(θ2 − θ). (21)

It is easily shown that the faceting condition can be written as

f (η) > (1 − η/η2) f (0) + (η/η2) f (η2) (22)

with η = tan θ and f (η) = γ (θ)/ cos θ . This condition is equivalent to the Herring
construction [26].

This inequality has a simple geometrical interpretation: the vicinal surface corresponding
to η is unstable(stable) when the point (η, f (η)) is above (below) the straight line D joining
the points (0, f (0)) and (η2, f (η2)) or, equivalently, the sign of the deviation � f (η) from this
straight line determines the stability (� f (η) < 0) or the instability (� f (η) > 0) of the vicinal
surface. By straightforward geometrical consideration, it is easily shown [26] that

� f (n) = [ES(n) − (p1 − 1)ES(n1) − (p2 − 1)ES(n2)]/A0(n) (23)

where A0(n) is the projected area of the surface unit cell A of the vicinal surface of orientation
n on �1. This formula applies as well in the domain 0 � θ � θc with p2 = 2 as when
θc � θ � θ2 with p1 = 2. ES(n) is the surface energy (per atom) of the surface normal to
n. It is interesting to note that the condition of instability of the surface corresponding to ηc

(normal nc) is simply

ES(nc) > ES(n1) + ES(n2). (24)

We will see below that in many cases the sign of � f (ηc) determines the stability for the whole
range [0, η2]. It is clear that the sign of � f is independent of the origin of angles, i.e., whether
�1 is referred to the angle θ1, since it is given by the sign of the expression in the square
brackets in equation (23) which will be denoted as �E(p1, p2) in the following.
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Figure 10. The behaviour of � f (η) when there are no interactions between steps. ηc corresponds
to p1 = p2 = 2.

Let us denote by A1 (A2) the area of the unit cell of �1 (�2). It is straightforward to show
that

� f (η) = �E(p1, 2)

A2 sin θ2
η, 0 � η � ηc,

� f (η) = �E(2, p2)

A1
(1 − η/η2), ηc � η � η2.

(25)

By using equation (11), �E(p1, 2) can be transformed into:

�E(p1, 2) = Estep(n1, p1) − ES(n2) + f1 ES(n1) (26)

(a similar equation can be written out for �E(2, p2) by interchanging the indices 1 and 2
in the right-hand side of this equation). As seen in section 3, the step energy varies with
p due to step–step interactions and, consequently, �E(p1, 2) and �E(2, p2) depend on η.
When these interactions are neglected, these last two quantities are equal to their values at
p1 = 2 and p2 = 2, or η = ηc. Then from (25) � f (η) has a triangular shape (figure 10).
Any vicinal surface between �1 and �2 is unstable (stable) with respect to faceting when
�E > 0 (�E < 0). In conclusion, any deviation of � f (η) from the triangular shape is a sign
of the presence of interactions between steps. If for a given orientationη0 such that 0 < η0 < ηc,
� f (η0) is above (below) the tangent to � f (η) at the origin, then the interactions between steps
are repulsive (attractive). The same conclusion holds for ηc < η0 < η2 but the tangent has
to be taken at η = η2. In the domain that will be considered below and defined by n1(100)

and n2(111), i.e., (100)–(111), η varies from 0 to η2 = √
2. When 0 < η � ηc (ηc = √

2/3)

the crystallographic planes (2 p − 1, 1, 1) are spanned and correspond to the p(100) × (111)

surfaces and when ηc � η < η2 (η2 = √
2) the crystallographic planes are (p +1, p−1, p−1)

and the corresponding vicinal surfaces are p(111) × (100) (see table 1). Note that for η = ηc

the Miller indices of the surface are (311).

5.2. Stability of vicinal surfaces at 0 K from semi-empirical potentials

Empirical potentials belonging to a very large class can be written as a sum of contributions Ei

from each atom i (referred to the energy of a free atom, Ei < 0) depending on its environment



S3190 C Barreteau et al

of neighbours j at the inter-atomic distance Ri j , i.e.

E =
∑

i

Ei =
∑

i

{∑
j �=i

V (Ri j ) + F

(∑
j �=i

g(Ri j)

)}
. (27)

E is the total energy of the system at 0 K neglecting the zero point vibrational energy. In the
following we set ρi = ∑

j �=i g(Ri j). The first term of equation (27) is thus pairwise while
the second one (in which g is a positive function) has an N body character. The functions V
and g are usually cut-off smoothly around a given radius Rc. This class of potentials includes
pair potentials (F(ρi) = 0), potentials based on EMT [7, 8], the EAM [9] and the glue
model [63] and potentials derived from the TB approximation in the second moment approach
(F(ρi ) ∝ √

ρi ) [10–12] or in which F(ρi ) ∝ ρα
i (α �= 1/2). This law with α = 2/3 has been

proposed to account for the effect of higher order moments [64] and has been actually found
for Cu when fitting the five parameters of the potential to experimental bulk quantities (see
section 4 and [23]). Note that in potentials of the TB type, the N body part is strictly attractive
while the pairwise part is strictly repulsive.

Some physical insight can be gained by fixing the inter-atomic distances to their bulk
equilibrium values, i.e., ignoring atomic relaxation effects. With this assumption

∑
j �=i V (Ri j )

and
∑

j �=i g(Ri j) are linear combinations of the number of neighbours Z J
i of atom i in the J th

coordination sphere of radius RJ (RJ < Rc) and Ei = E(Z 1
i , . . . , Z J

i , . . .). It is usual to take
R1 as the reference distance and set g(R1) = 1. From the discussion of section 5.1, we will
first determine whether there is any interaction between steps. Obviously steps start to interact
when the range of the potential is large enough. Then the two straight lines of figure 10
transform into as many segments (with discontinuities of slopes) as there are different step
energies when p increases.

5.2.1. Pair potentials. These potentials are the simplest of the ones which have been used in
the past. We will limit ourselves to the study of unrelaxed surfaces since it is well known that
pair potentials most often lead to an outward relaxation instead of the inward one generally
observed at metal surfaces. For any orientation of the surface it is easy to determine the
coordination numbers Z 1

i , Z 2
i , . . . for the successive atomic layers i from which the numbers

nJ
step are deduced. For the domain (100)–(111) it is found that there are no step interactions if

Rc < R6. Then � f (η) has the triangular shape of figure 10 and its sign on the whole domain
[0, η2] is given by (see equation (24))

�E = ES(311) − ES(100) − ES(111) = −4(V3 + V5). (28)

In conclusion, if Rc < R3, �E = 0, so the energy of any vicinal surface is equal to the
energy of the faceted (100)/(111) surface. If Rc < R6, the surface is unstable if V3 + V5 < 0
and stable otherwise.

5.2.2. N body semi-empirical potentials. We now examine the case of semi-empirical
potentials including an N body contribution and begin by neglecting atomic relaxation in
order to derive general trends for potentials of type (27). Then we will present a study of the
stability of Cu vicinal surfaces in the (100)–(111) domain using the semi-empirical potential
set up in section 4.1.

When the inter-atomic distances are fixed to their bulk equilibrium values, the energy of
an atom i , Ei(Z 1

i , . . . , Z J
i , . . .), is no longer a linear function of Z J

i . However as will be seen
below, the mathematical properties of the function F have interesting physical consequences.
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It can be shown easily that the step energies of p(100) × (111) and p(111) × (100) are
independent of p as long as Rc < R3 and are given by

E p(100)×(111)
step = E(7, 3) + E(10, 5) − 3E(8, 5)/2 − E(12, 5)/2 (29)

and:

E p(111)×(100)
step = E(7, 3) − 5E(9, 3)/3 + E(10, 5) + E(12, 5) − 4E(12, 6)/3. (30)

Consequently for any semi-empirical potential of the form (27) including first and second
nearest neighbours only, � f (η) has a triangular shape when atomic relaxation is neglected
and its sign is given by

�E = ES(311) − ES(100) − ES(111) (31)

or

�E = [E(7, 3) + E(10, 5)] − [E(8, 5) + E(9, 3)]. (32)

Thus, in this approximation, �E arises from the difference of the sum of energies of, on
the one hand, atoms belonging to the outer (Z 1

i = 7, Z 2
i = 3) and inner (Z 1

i = 10, Z 2
i = 5)

step edges and, on the other hand, (100) (Z 1
i = 8, Z 2

i = 5) and (111) (Z 1
i = 9, Z 2

i = 3) surface
atoms.

As shown in section 5.2.1 the pair potential, when limited to second nearest neighbours,
does not contribute to �E . Noting that, since we have chosen g(R1) = 1, ρi = Z 1

i + Z 2
i g2

with g2 = g(R2), we get

�E = [F(7 + 3g2) − F(9 + 3g2)] − [F(8 + 5g2) − F(10 + 5g2)]. (33)

For all the existing potentials of the form (27) F ′′(ρ) = d2 F/dρ2 is positive. As a
consequence F(ρ − 2) − F(ρ) is a decreasing function of ρ; therefore �E (and thus � f (η))
is always positive in the whole domain. This common property of this class of potentials has
a clear physical origin: the energy Ei of an atom i should decrease more and more slowly
when its coordination increases towards the bulk coordination [59, 65]. This clearly implies
that F ′′(ρ) must be positive. We have then proved that for any semi-empirical potential of the
general form (27) on a rigid lattice at 0 K and with a cut-off radius Rc < R3, any metal vicinal
surface between (100) and (111) is unstable with respect to faceting.

So far we have demonstrated general results on the stability of vicinal surfaces neglecting
atomic relaxation. These results were obtained under the assumption that the range of the
potential is restricted to the first two shells of neighbours. As shown in [26] it is not possible
to derive a general behaviour when the range of interactions is extended to further neighbours.
In order to investigate the effect of atomic relaxation and of the range of interactions, it is
necessary to have an explicit expression for the potential. We will now present the results
obtained for Cu with the semi-empirical potential (P2) of section 4 whose range is limited to
first and second neighbours. In addition we have also considered the potential (P4) of the same
type (α = 2/3) but with a cut-off radius between fourth and fifth neighbours with parameters
obtained from a least mean squares fit of the cohesive energy, the three elastic constants and
the bulk equilibrium distance. In all cases the atomic structure of each vicinal surface has been
fully relaxed using a conjugate gradient algorithm.

The results are given in figure 11 for the (100)–(111) domain using both potentials and
relaxed as well as unrelaxed surfaces. As predicted from our previous analysis in the unrelaxed
case � f (η) has a triangular shape and is positive if the range of the potential is restricted to
second neighbours (P2). However as expected, due to the effect of further neighbours � f (η)

deviates from a triangular shape with potential P4 and, more surprisingly, it changes sign. Thus
all vicinal surfaces between (100) and (111) become stable.
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Figure 11. � f (η) for Cu derived from the semi-empirical potentials P2 and P4 given in the text
corresponding to two cut-off radii with and without relaxation for the (100)–(111) domain.

Finally, atomic relaxation always acts in favour of the stabilization of vicinal surfaces
since the atomic displacements are larger on a vicinal surface than on a flat one (see section 4).
Nevertheless this effect is not large enough to modify the stability or instability of the vicinal
surfaces. Furthermore, as clearly seen when using potential P2 in the relaxed case, � f (η) no
longer has a triangular shape and is entirely located above the triangle built from its tangent at
both ends due to the repulsive elastic step–step interactions (see section 4).

Let us discuss and summarize our results. From our analytical study and figure 11 it
appears that the range of the potential plays an important role but it is difficult to draw general
conclusions. In all cases considered here the effect of further neighbours is to act in favour
of the stabilization of vicinal surfaces; however including them will not automatically make
vicinal surfaces stable—this crucially depends on their relative importance and, therefore, on
the dependence of the functions V(r) and g(r) on distance in (27). The stability also depends on
the relative importance of V with respect to F(ρ) since, when further neighbours are included,
both terms are present in the energy balance. Moreover, in EAM and EMT potentials the N
body and pair parts are not necessarily purely attractive or purely repulsive; therefore even the
sign of these terms is not known. Let us finally compare our results with those of Frenken
and Stoltze [62]. These authors have calculated � f (η) for the fully relaxed (100) and (111)

vicinal surfaces of Ag (and other metals) using an EMT potential with R3 < Rc < R4 but
in which the contribution of third neighbours is nearly negligible. This explains the strong
similarity between our results on relaxed Cu (figure 11) with potential P2 and those of Frenken
and Stoltze for Ag.

In conclusion, the instability of vicinal surfaces at 0 K claimed by these authors is an
unavoidable consequence of the type of potential used when interactions are limited to first
and second neighbours.

5.3. Stability of vicinal surfaces at 0 K from tight binding calculations

It is interesting to deduce the function �f (η) from the results presented in section 3. Indeed, the
TB calculations are certainly more realistic than those based on semi-empirical potentials since
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Figure 12. � f (η) for Rh, Pd and Cu from TB calculations for the (100)–(111) domain.

they account for the influence of the angular arrangement of neighbours and include electronic
step–step interactions (often oscillatory). We have seen in section 3 that these interactions are
small. However they may play a role in the very delicate energy balance which governs the
stability of vicinal surfaces.

The functions � f (η) for Rh, Pd and Cu in the (100)–(111) domain are plotted in figure 12
and show very different behaviours depending on the chemical element. For Cu all vicinal
surfaces in the domain are stable at 0 K while for Pd they are unstable. Rh behaves quite
differently: even though all vicinal surfaces are stable with respect to faceting into (100) and
(111) facets, the vicinal surfaces of orientation such that

√
2/5 < η < 3

√
2/5 are unstable

relative to faceting into (511) and (533) orientations which correspond to the two local minima
in � f (η). This peculiar behaviour is clearly related to the electronic step–step interactions
which are repulsive for the (311) and (211) surfaces and attractive for (511) and (533) surfaces
(see figure 2).

5.4. Finite temperature effects

So far all calculations were carried out at 0 K. Therefore it is important to know whether the
effect of a finite temperature may be large enough to reverse the stability of vicinal surfaces
with respect to faceting. The variation of f (η) with temperature arises from two contributions:
the vibrational effects that have been studied in section 4 and the meandering of steps, which
is regulated by the kink formation energy, giving rise to entropy contributions. Let us first
discuss the order of magnitude of the latter. In the limit of infinite terraces steps fluctuate
independently of each other but when the terrace width decreases the entropy gain due to the
meandering is limited by the non-crossing condition which gives rise to a repulsive step–step
interaction. Actually, both effects are driven by a parameter ζ = exp(−εkink/kBT ) where εkink

is the kink formation energy. As can be seen from table 4 this parameter is quite small, at least
up to room temperature and, as a consequence, these two contributions are negligible compared
with the value of � f (η) at 0 K and they are also small compared with the contribution � fvib(η)

due to vibrations [26].
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Figure 13. � fvib(η) in the (100)–(111) domain from potential P2 as a function of temperature.

From the study of vibrations presented in section 4, we can easily derive � fvib(η) as
a function of temperature in the (100)–(111) domain. The corresponding curves for copper
are drawn in figure 13. It can be seen that � fvib is positive but its order of magnitude is
not large enough to destabilize the vicinal surfaces of Cu in this domain. These results are
in contradiction with those of Frenken and Stoltze [62]. Actually these authors evaluated the
vibrational entropy contribution using a simplified Einstein model and neglected the vibrational
internal energy which is justified at room temperature, but not at low temperature. More
importantly they only included the perturbation between the outer edge and a (111) surface
atom and not the term coming from the perturbation between the inner edge and the (100)
surface atom (see equation (32)). These two terms are of opposite sign and are expected to
be of the same order of magnitude. Consequently not only is the estimate of � fvib in [62] too
large but even the sign is wrong.

In conclusion, the contribution of the vibrations � fvib to � f is quite small. Thus its
calculation needs a precise knowledge of the phonon spectra including both vibrational internal
energy and entropy, at least if the temperature varies from 0 K to 	300 K.

6. Conclusions

In conclusion, with the spd TB method it is possible to carry out realistic calculations on the
energetics of vicinal surfaces: surface, step and kink energies. Indeed, the formation energies
of isolated steps, obtained with this method, on Rh, Pd and Cu surfaces for various geometries
are in good agreement with existing experimental data. In particular, our results predict that
an adisland of Cu on Cu(100) should be a square with broken corners at 0 K. Moreover the
correct relative stability of the two types of step (A and B) on the vicinal surfaces of Cu(111)
is obtained. Kink energies have also been calculated and compare nicely with experimental
data.

Following the approach of Vitos et al[34] and from the knowledge of the surface energies of
the three low index surfaces calculated from the spd TB Hamiltonian, effective pair interactions
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can be deduced giving step and kink energies in good agreement with those derived from
the diagonalization of the same Hamiltonian for vicinal surfaces. However in this approach
step–step interactions are disregarded. In contrast, our study, based on the calculation of
step energies on vicinal surfaces as a function of the terrace width, has enabled us to derive
electronic step–step interactions for narrow and moderately wide terraces (d � 20 Å). These
interactions are rapidly decaying and they may be attractive or repulsive depending on the
terrace width. Moreover, in this range of widths, their order of magnitude is comparable to
that of other interactions.

A semi-empirical potential for copper, including an N body contribution, has been built.
It accounts for the multilayer relaxation of vicinal surfaces and describes accurately their
localized vibration modes observed in IHAS and EELS. The contribution of vibrations to the
free energy of steps has also been calculated as a function of the distance between steps and
it was found that the step–step interactions mediated by phonons are attractive for Cu vicinal
surfaces in the (100)–(111) domain.

The stability of vicinal surfaces with respect to faceting has also been investigated. The
conclusions derived from semi-empirical potentials have been analysed and criticized. In
contrast to the results obtained from these potentials which predict that vicinal surfaces
of metals are unstable at 0 K, the TB electronic structure calculations lead to a variety of
behaviours: a vicinal surface in the (100)–(111) domain may be stable (Cu) or unstable (Pd)
relative to faceting into (100) and (111) facets or may even undergo a faceting towards other
vicinal surfaces (Rh). Finally, temperature effects have been found to be negligible for Cu, at
least up to room temperature.
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